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A B S T R A C T

The largest collection of tide gauge records assembled to date, called GESLA-2, has been used to provide reliable
extreme sea level parameters at 655 locations around the world. This has enabled a rigorous assessment of the
European Union-funded DINAS-COAST (D-C) data set of extreme sea level information for the global coastline
that has been used in many published flood impact studies. We find the D-C extreme levels to be generally both
too high, compared to those from GESLA-2, and too flat, when plotted as a function of return period. This leads
to an over-estimation of the probability of extreme sea levels in the present day for most locations around the
world, and also to an over-estimation of the probability of extreme sea levels in the future as sea level rises. A
detailed impact study is conducted for the world's largest coastal cities following the approach of Hallegatte et al.
(2013), resulting in similar conclusions for these particular locations. We suggest that most previous studies that
have relied upon D-C information should be re-assessed in the light of these findings, using more recent mod-
elling-based estimates of extreme sea level information.

1. Introduction

As climate changes, and as sea level rises, coastal impacts are ex-
pected due to an increase in the likelihood of flooding. There will be
costs associated with flood damage, human impacts and the need for
modified coastal infrastructure and adaptation. Such impacts have been
assessed at local to global scales using knowledge of the distribution of
coastal populations and assets, coastal topography, estimates of present
and future coastal adaptation, and plausible projections of future in-
creases in mean and extreme sea levels (Nicholls, 2010). Extreme level
parameters are needed in such studies in order to estimate present-day
and future changes in the likelihood of extreme events as sea level rises.

A notable achievement in this area of research has been the devel-
opment of the Dynamic and Interactive Vulnerability Assessment
(DIVA) model (Hinkel and Klein, 2009; Hinkel et al., 2014) which has
been employed to estimate the global costs of coastal impacts under
scenarios of climate, sea level and socio-economic change, and has been
influential in review processes such as the Intergovernmental Panel on
Climate Change Fifth Assessment Report (IPCC AR5). The para-
meterisation of the likelihood of extreme sea levels used in most DIVA
assessments was developed more than a decade ago by the European

Union (EU)-funded DINAS-COAST (Dynamic and Interactive Assess-
ment of National, Regional and Global Vulnerability of Coastal Zones to
Sea-Level Rise, hereafter D-C) project (Vafeidis et al., 2008).

In this paper, we report on a rigorous assessment of the extreme
level parameterisations in D-C by means of an independent quasi-global
data set of extreme sea level information obtained by tide gauges. This
tide gauge data set is the largest ever to have been assembled. For each
tide gauge record spanning at least 20 years, we have computed ex-
treme sea level parameters, suitable for comparison to those in D-C at
the same locations, and thereby providing as complete as possible a
validation of the D-C data set.

This assessment demonstrates that there are important deficiencies
in the D-C data, as might be expected in a relatively old dataset.
Nevertheless, we feel that it is useful to clarify these deficiencies as the
D-C data has been used extensively in earlier impact and adaptation
research of coasts (e.g. McLeod et al., 2010; Hanson et al., 2011;
Nicholls et al., 2011; Pardaens et al., 2011; Bosello et al., 2012;
Hallegatte et al., 2013; Hinkel et al., 2010, 2014; Brown et al., 2016;
Diaz, 2016), including in the IPCC AR5 Working Group II (Wong et al.,
2014).

There is particular interest in knowing how coastal cities around the
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world may be subject to a greater frequency of flooding as sea level rises
as they represent impact (and adaptation) hotspots. Many of these cities
have tide gauges nearby which have long records from which reliable
extreme sea level information may be extracted. We have used a flood
risk model developed by Hallegatte et al. (2013) to explore how im-
proved estimates of extreme sea levels from these tide gauges, instead
of D-C information, change exposure and risk estimates at these loca-
tions for the present-day and with future sea level rise.

In Section 2 below, we describe how extreme sea levels recorded by
tide gauges are usually parameterised as either Generalised Extreme
Value (GEV) or the more restrictive Gumbel distributions, and how
parameters from the latter can be used to determine 1, 10, 100 and
1000 year return levels for comparison with the information in D-C. We
then provide some background to the development of the D-C data set
and describe briefly how extreme sea level information is parameterised
within it. That is followed by an introduction to the quasi-global tide
gauge data set called GESLA-2 that we have used to validate the D-C
values. Section 3 describes our main findings from comparisons of D-C
and GESLA-2 information. Section 4 then considers how different esti-
mates of changes in flood risk pertain to coastal cities, using either the
D-C or GESLA-2 information. Section 5 refers to the implications for
changes in the frequency of extreme sea levels with sea level rise, and
finally Section 6 summarises our conclusions.

2. Extreme levels and data sets

2.1. Extreme level distributions

The highest sea level (also called the extreme sea level) recorded by
a tide gauge in a year will vary from year to year due to many factors.
These factors include interannual changes in the ocean tide, variations
in the occurrence of large storm surges due to both tropical and ex-
tratropical cyclones (e.g. von Storch and Woth, 2008; Khouakhi and
Villarini, 2016), and fluctuations in mean sea level (MSL) such as those
that can be many decimetres in magnitude that occur in the tropical
Pacific during El Niño Southern Oscillation (ENSO) events (Merrifield
et al., 2013). The likelihood of a particular extreme level is commonly
parameterised as a GEV distribution containing three parameters: the
location, scale and shape parameters. The location parameter re-
presents the height for some specific return period (e.g. the 1-year re-
turn level), the scale parameter gives the spread of extreme values from
year to year (an e-folding distance in the vertical), and the shape
parameter determines the upper tail of the distribution and describes
the behaviour of the most unusual extreme events (Pugh and
Woodworth, 2014). When the shape parameter is taken as zero, the
GEV is reduced to a Gumbel distribution (Coles, 2001):

= = −N
R

μ h λ1 exp(( ) ) (1)

where N is the frequency of a level h being exceeded in a given year,
which corresponds to a return period R and where μ and λ are the lo-
cation and scale parameters respectively (the ‘return period’ is also
called the ‘average recurrence interval’). In most cases, the Gumbel
distribution is found to be an adequate approximation of the GEV for
return periods of 10s to 100s of years, i.e. for almost all observed ex-
tremes except for the most rare events (e.g. van den Brink and Können,
2011). Pairs of the 1, 10, 100 and 1000 year return period extreme
levels above MSL (H1, H10, H100 and H1000) then have simple linear
relationships such as:

− = −H H λ( 100 1) ln 1
1

ln 1
100 (2)

where H1 is identical to the location parameter μ. In this situation,
an ‘extreme level curve’, obtained by plotting extreme level versus the
logarithm of the return period, is a straight line with a gradient that is
proportional to the scale parameter.

This approach to our analysis of the tide gauge data from GESLA-2 is
also appropriate for study of the extreme levels in the D-C data set
which, it will be seen below, are largely consistent with having a
Gumbel-like form for most of the world coastline.

2.2. DINAS-COAST and GESLA-2 information

The D-C data set of extreme sea level information has a heritage in
the earlier studies of the Global Vulnerability Assessment (GVA)
(Hoozemans et al., 1993; Nicholls and Hoozemans, 2005). In these
studies, present-day extreme sea levels around the global coastline are
estimated by combining information on several oceanographic pro-
cesses which result in high sea levels: the range of the ocean tide at the
coast as represented by values of mean high water (MHW) above MSL
taken from tide tables; the frequency and magnitude of storm surge
(wind setup), simply modelled from wind conditions (which are in-
ferred in turn from statistics of the wave climate) and estimates of the
bottom slope and depth; and the possible changes in barometric pres-
sure during storms. Other oceanographic processes, such as variability
in the ocean circulation, are not included. This information on sea level
variability is then used to derive present-day extreme sea level para-
meters, which are then combined with estimates of coastal subsidence
and projections of MSL change in order to perform an impact assess-
ment for some time in the future.

The D-C data set consists of a table of values of 1, 10, 100 and
1000 year extreme levels above MSL (i.e. the H1, H10, H100 and H1000
quantities mentioned above) for 12,148 segments of the world coastline
excluding Antarctica (Vafeidis et al., 2008; Wolff et al., 2016). The
median distance between nearest-neighbour segment centroids is
10.5 km. Pairs of H values can be used to determine the equivalent scale
parameters according to Eq. (2). In the results shown below, we have
made use of H1 and H100 finding little difference when using H10 and
H1000 (see below).

The tide gauge information comes from a data set called GESLA-2
that has been assembled from a number of national and international
sea level databanks by Philip Woodworth (National Oceanography
Centre, UK), John Hunter (University of Tasmania, Australia), Marta
Marcos (University of the Balearic Islands, Spain), Melisa Menéndez
(University of Cantabria, Spain) and Ivan Haigh (University of
Southampton, UK). It is an update and extension of the GESLA (Global
Extreme Sea Level Analysis) data set used by Menéndez and
Woodworth (2010) and others. Although there are many individual
contributions to GESLA-2, well over a quarter of its station-years are
provided by the research quality data set of the University of Hawaii
Sea Level Center. The GESLA-2 data set already has a reasonable geo-
graphical distribution (Fig. SM1), although some coastline stretches
have little or no coverage. It is planned to add other data in the future
as it becomes available.

The data set presently contains 39,151 station-years of information
from 1355 station records (with some stations having alternative ver-
sions of the records provided by different sources) or typically 29 years
per record, although the actual number of years varies from only 1 at
several short-lived sites, to 167 in the case of Brest, France. The data set
may be obtained from www.gesla.org. More detailed information may
be found in Woodworth et al. (2017).

All the tide gauge data in GESLA-2 have hourly or more frequent
sampling. Records will have had some form of quality control under-
taken by the data providers. However, the extent to which that control
will have been undertaken will inevitably vary between providers and
probably with time. We are interested in non-tsunami ocean processes
for comparison with D-C information. However, while some large tsu-
nami signals and other data ‘spikes’ will have been removed from, or
flagged in, the tide-gauge records, some will undoubtedly remain.
Therefore, in the first procedure to be described (the one that is used for
the final analyses), we apply a simple method for the rejection of outlier
annual maxima. We believe that the resultant extremes parameters are
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adequate for making regional comparisons with D-C information.
(There is a general question to do with the analysis of extreme sea levels
from tide gauge records, as to whether the most extreme events are
reliably recorded, see for example Section 7.3 of Pugh and Woodworth
(2014). However, any locations where there is significant loss of data
on the highest extremes would likely yield extremes distributions that
are significantly non-Gumbel, leading to rejection by our iterative
quality control procedure. In the present application of the data set,
which involves validation of the D-C data set on a regional and global
basis, we do not believe this question to be of major importance.)

We use annual extreme sea levels from the tide gauge records in
GESLA-2. These extreme values are the overall observed ones i.e. we are
not concerned if the extremes arise primarily from variations in the tide
or in ‘surge’ or ‘mean sea level’ components. Gumbel parameters were
computed from the observed extremes by two methods.

The first method is based on that described by Hunter (2012). Prior
to extremes analysis, the data were detrended, and then ‘binned’ so as
to produce files with a minimum sampling interval of 1 h. Annual
maxima were estimated using a declustering algorithm such that any
extreme events closer than 3 days were counted as a single event, and
any gaps in time were removed from the record. The method fits these
annual maxima to a Gumbel distribution using the ismev package
(Coles, 2001, p. 48) implemented in the statistical language R (R
Development Core Team, 2011). Annual maxima were then rejected in
an iterative fashion (with a maximum of 5 iterations) if they fell outside
a specified range (roughly 3.2-sigma) based on the estimated un-
certainty range of the Gumbel fit and the number of annual maxima
(each time revising the earlier detrending process using the reduced
data set). If this process removed more than 15% of the original annual
maxima, that tide gauge record was not used. In addition, we removed
four more records (from Balboa, Newlyn, Brest and Roscoff) as further
inspection showed the distribution of their extremes to be clearly non-
Gumbel in character. Records that survived these tests were assumed to
have an effective length equal to the number of annual maxima used in
the final Gumbel fit.

Fig. 1 provides examples of linear Gumbel fits using this procedure
for six stations in quite different locations. In each case, it shows annual
maximum sea levels (above MSL) plotted versus return period with the
dashed lines giving 95% confidence intervals. The black squares are the
corresponding H1, H10 and H100 values (above MSL) for each location
in the D-C data set, several of which will be referred to below.

The number of annual maxima used in the final Gumbel fits is
shown in Fig. 2, and for further analysis we require that this value be at
least 20 years resulting in 655 stations. Fig. 2 shows that in most cases
there are less than 60 annual maxima, although there is a long tail, with
a largest value of 123 years in the record from Stockholm, Sweden.
(Brest does not provide our longest record for analysis as many of its
years of data are rejected in the above procedure.) Some of the peaks in
this distribution are artefacts of contributions to GESLA-2 from autho-
rities with a large number of stations, with each of their records
spanning a similar period. For example, of the 27 stations in the peak at
44 years, 11 are from Finland. The group with records of 60–65 years is
primarily from the USA.

It is generally accepted that return periods may be extrapolated out
to around four times the number of available annual maxima (see, for
example, Pugh and Woodworth, 2014, page 323). We have checked
that the Gumbel fits provide formal errors which are consistent with
this expectation. We find the average errors (95% confidence level) of
the 100-year return period levels to be ~0.15 m (7.2% of the levels
themselves expressed relative to MSL) using the whole data set (655
stations), or a little larger (~0.17 m or 8.1%) for the 225 stations with
only 20–30 annual maxima. This confirms that the fits have value out to
return periods of approximately a century, which is our main timescale
of interest.

A second method made use of independent software to obtain an-
nual maximum sea level from each year of data that was at least 75%

complete. Care was taken not to include two annual maxima occurring
within a 3-day window at calendar year end/start. In these cases, the
smaller of the two maxima was excluded and an iterative search made
for annual maxima at least 3 days apart in the two individual years.
Annual maxima were then expressed relative to the MSL linear trend for
the same years of data, so as to remove long-term changes in sea and
land levels, in order to obtain extremes relative to an “MSL datum” that
is more akin to that implied in the D-C information. The Gumbel
parameters were then determined using the Matlab® evfit function.

The two methods resulted in almost the same Gumbel parameters
and for the present study we have used values from the first method
only. The Gumbel location and scale parameters from that method and
their uncertainties are given in the Supplementary Material.

3. Comparisons of D-C and GESLA-2 information

Fig. 3(a) shows the extreme level information for the world coast-
line in the D-C data set. It shows the distribution of the reciprocals of
the scale parameters at each coastal location, as calculated from the H1
and H100 levels and using Eq. (2). (An exponential of the reciprocal of
the scale parameter determines the increase in the frequency of ex-
ceeding a given level using a Gumbel distribution, as discussed further
below.) These scale parameters are about 13% smaller than those using
H10 and H1000 (Fig. SM2) which suggests that the D-C H values are not
completely linear (or Gumbel-like) but bend upwards at higher return
periods (i.e. in a GEV there would be a small positive shape parameter,
see Coles (2001, p.50)). However, this 13% effect is not sufficiently
large so as to invalidate our use of Gumbel parameterisations in the
present analysis.

Most of the coastline in Fig. 3(a) can be seen to be coloured red (i.e.
the scale parameters at these locations are of the order of 0.05 m or
less), although some sections of coast including NW Europe, the
Atlantic coast of N America and the Russian Arctic are blue (i.e. scale
parameters typically 0.2 m).

For comparison, Fig. 3(b) shows the reciprocals of the scale para-
meters for the 655 stations in the GESLA-2 data set that have at least
20 years of data. Although GESLA-2 does not extend to the entire global
coastline, unlike D-C, there are sufficient points at which to perform a
validation of the D-C information.

There can be seen to be some similarities between Fig. 3(a) and (b),
such as the sections of coast in blue for NW Europe and the Atlantic and
Gulf coasts of N America. However, there are also differences, such as
the Pacific coasts of N and S America which are all red in Fig. 3(a), but
are blue along the Canadian and Alaskan coasts in Fig. 3(b). In addition,
on the coasts of Australia and China there are generally more (and
darker) blue dots in panel (b) than in (a).

In spite of the spatial limitations of the GESLA-2 data set, it has
sufficient coverage to make a first general point: that the D-C data set
contains scale parameters that are generally too small, or, in other
words, contains sets of extreme level information (H1, H10, H100 and
H1000) that describe return level curves (plots of extreme level versus
the logarithm of the return period) that have too small a gradient (i.e.
they are too ‘flat’, such as for Sitka, Aburatsu and Stockholm in Fig. 1).

Figs. 4 and 5 show comparisons between the two data sets using
values from GESLA-2 and their nearest D-C locations. A maximum se-
paration of 170 km between the centroid of a D-C segment and the tide
gauge in GESLA-2 was allowed, which removed 26 of the 655 GESLA-2
records, and left 629 records. As mentioned above, the D-C segment
centroids are mostly spaced apart by ~10 km. The 170 km separation
cut was designed to exclude remote stations which are not represented
in the D-C data such as Antarctica and some remote islands.

Fig. 4(a) shows a scatter plot of GESLA-2 vs. D-C scale parameters.
Their differences have a median of 0.024 m and a standard deviation of
0.071 m (Fig. 4b). The distribution is best described by the dashed line
representing a least-squares fit through the origin, expressing D-C scale
parameters as 0.70 ± 0.02 times those from GESLA-2. This confirms
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our impressions from inspection of Fig. 3(a) and (b): most points do not
lie on the diagonal, but the true scale parameters at these locations, as
provided by GESLA-2, are larger than the ones suggested by D-C. There
is a very weak correlation between the two sets (correlation coeffi-
cient = 0.196), corresponding to 4% of the variance in D-C scale
parameter values being explainable by the corresponding GESLA-2
values.

Fig. 5(a) addresses the same topic, but in terms of the H1, H10,

H100 and H1000 values at each location instead of scale parameters.
This figure allows us to make our second general point: that the extreme
levels (H1 to H1000), or the location parameters of the Gumbel dis-
tribution, in D-C are too large when compared to GESLA-2. This bias
could be explained by imprecise ocean tide assumptions in D-C re-
garding the height of MHW above MSL, or, more likely, errors in the
modelling of the surge component of the extremes.

Fig. 5(b) shows that in most cases the differences H1000 minus H1
in GESLA-2 are larger than in D-C. This relates to our first general point:
that the extreme level curves in D-C are too flat, as previously de-
monstrated by the scale parameters in Fig. 4(a).

Similar conclusions to those obtained from Fig. 5(a, b) can be drawn
from complementary cumulative distribution function (CCDF, also
sometimes called the ‘exceedance distribution’) curves of H1 etc. from
the available sets of D-C and GESLA-2 information. Fig. 5(c) shows the
D-C CCDF curves for H1, H10, H100 and H1000 by lines in green, blue,
red and black respectively. To their left, can be seen the set of four
curves for GESLA-2, similarly coloured. For example, the black curve
for D-C indicates that H1000 exceeds 4 m (above MSL) at approxi-
mately 20% of stations. On the other hand, the corresponding GESLA-2
black curve indicates that 20% of stations have values of H1000 ex-
ceeding only 3 m. Fig. 5(c) can be inspected further to measure the
spread of the H1–H1000 curves at their mid-points where the CCDF
value is 0.5. The spread between the D-C distributions (green to black
lines) at this mid-point is 0.59 m. This spread is more than 25% less
than that in the GESLA-2 distributions (green to black lines) which is
0.80 m.

The same conclusions obtained from Figs. 4 and 5 are found by
requiring the GESLA-2 records to have at least 30 years of data rather
than 20 years; in this case, 446 records are available, of which 435
remain after the 170 km separation requirement. The median difference
between the two is 0.027 m, with a standard deviation of 0.069 m and a
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Fig. 1. Annual maximum sea levels (above MSL) plotted versus return period observed at stations in quite different locations: Sitka, Alaska, United States; Aburatsu, Japan; Charleston,
South Carolina, United States; Stockholm, Sweden; Isla Fiscal, Rio de Janeiro, Brazil; Fremantle, Australia. The dashed lines give 95% confidence intervals for the linear Gumbel fits. The
black squares are the H1, H10 and H100 values (above MSL) for this location in the D-C data set.
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correlation coefficient of 0.284. At a CCDF value of 0.5, the spread of
the D-C curves is 0.59 m, and that of the GESLA-2 curves is 0.86 m.

It can be seen that Fig. 5(c) allows us to make both of our general
points, but in terms of the overall distribution of data rather than at
individual locations: the D-C information contains sets of H1–H1000
values that on average are too large and with return level curves that
are too ‘flat’ when compared to GESLA-2 observations.

4. Effects on flood impacts at major coastal cities

As mentioned above, the point estimates of return water levels that
we obtain from GESLA-2 cannot replace the D-C data in global impact
models, such as DIVA, to explore the effects of the improved re-
presentation of extreme sea levels on exposure and risk estimates.
However, we can use our results and perform such analyses for a se-
lection of large coastal cities using the model developed by Hallegatte
et al. (2013; hereafter H13). In H13, present-day and future (under sea

level rise and socio-economic scenarios) flood exposure and risk were
assessed for the world's largest 136 port cities; extreme sea levels were
taken from the D-C data set, as described above. Comparing the loca-
tions of these cities with those of the 655 tide gauges with more than
20 years of data in GESLA-2, we find that 59 (out of the 136) cities have
a tide gauge within 200 km (Fig. 6). Hence, for these 59 cities we can
quantify the effects of the discrepancies between D-C and GESLA-2 on
present-day and future exposure and risk estimates.

There will undoubtedly be differences between D-C and GESLA-2
due to the fact that cities and tide gauges are not exactly collocated. We
have analysed the Gumbel parameters for all pairs of GESLA-2 tide
gauges that are within 200 km of each other, and find that the median
differences in the location and scale parameters are 0.15 and 0.018 m,
respectively (we quote the medians because the distributions of the
differences are highly skewed). We believe that these differences are
small compared with the discrepancies between D-C and GESLA-2 re-
ported here.
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Fig. 7 shows the relative differences (expressed in percentages) from
using the D-C and GESLA-2 extreme sea levels in (i) present-day (here
meaning the year 2005) exposure in terms of monetary assets to ex-
treme sea levels with a return period of 100 years (Fig. 7a), (ii) the
present-day annual average losses (AAL) (Fig. 7b), and (iii) the AAL in
the year 2050 assuming 20 cm global sea level rise, 40 cm subsidence at
cities that are subjected to subsidence, and socio-economic change
(those are the same scenarios used in H13) (Fig. 7c). For our sensitivity
analysis we assume that no adaptation takes place until 2050. This is
because defence standards in the H13 model are represented by return
periods and hence the protection levels would change alongside our
estimates of extreme sea levels. Most earlier analyses have made this
assumption for consistency purposes. It is also worth noting that we
focus on the relative comparison between results obtained with D-C and
GESLA-2 data, rather than the absolute flood exposure and risk for in-
dividual cities.
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In Fig. 7(a) and (b) we can see that the average absolute differences
for the present-day 100-year exposure and AAL are in the order of 20%
and 30%, respectively. Using D-C data leads to an overestimation of
both exposure and AAL at most cities, but coherent underestimation for
cities in Europe, the only region where D-C extreme sea levels are
generally too low. When we include sea level rise (Fig. 7c) and assume
no adaptation, the overestimation in AAL almost doubles to 57% and
occurs consistently in all regions. There are two notable exceptions in
Australia (Brisbane and Sydney), where the scale parameters obtained
from the D-C levels are larger than the ones from GESLA-2 (i.e. the
Gumbel distributions from D-C have a steeper slope).

The above analysis shows us the overall effects of improving the re-
presentation of extreme sea level for the exposure and risk analysis. As
outlined in the previous sections, there are different types of discrepancies
between the D-C and GESLA-2 data, namely differences in the location
parameters (leading to offsets in the return levels) and differences in the
scale parameters (leading to different slopes of the distributions). In order
to quantify the effects of each of these discrepancies, we modify the
Gumbel distributions that we obtain from the GESLA-2 data. We start by
removing the vertical offset, which means that at a particular site we move
the GESLA-2 distribution upwards or downwards so that the 10-year re-
turn levels match the ones from the D-C data (we did the same for the 1-
year events and the results were essentially the same). We then use the
modified distributions and extreme sea level information to repeat the
exposure and risk analysis (Fig. 8a–c); this shows us the effect from having
different slopes only. The differences in present-day 100-year exposure
and AAL become much smaller (5% and 10% mean absolute differences)
and now the D-C data leads generally to smaller values. This makes sense
given that the modified distributions from GESLA-2 still have steeper
slopes (at most sites) resulting in higher levels for long return periods
(which are most important given that many cities have relatively high
protection standards). Accordingly, there is still a significant over-
estimation of close to 50% when using D-C extremes and adding sea level
rise; this is predominantly due to differences in the scale parameters (or
distribution slopes).

Next, we go back to our original distributions obtained from the
GESLA-2 data and this time we modify their slope to match the ones
obtained from the D-C data. To achieve this, the distributions are ro-
tated about the 1-year return period values. We then again repeat the
exposure and risk analysis in order to quantify the effect from having
only vertical offsets in the distributions (Fig. 9a–c). For the present-day
conditions the differences become much larger again (20% and 26% for
100-year exposure and AAL, respectively) and similar to those we found
from the overall comparison (Fig. 7), but the mean absolute difference
for AAL with sea level rise drops by almost half to 25%.

Based on these results we can make our third general point: that for
present-day exposure and risk assessments, vertical offsets in the dis-
tributions (as defined by the 10-year return levels) are more important
than discrepancies in the slopes, but when sea level rise is included
discrepancies in the scale parameters (or slopes of the distributions)
clearly dominate in terms of distorting results using the methods of
H13, which are a standard approach for impact and risk models.

Despite the quantitative differences in 100-year exposure and AAL
estimates, the absolute impacts remain significant and the ranking of
the cities that are most exposed and at risk from coastal flooding
changes little. Fig. SM4 shows the ranking according to present-day
AAL when using D-C and GESLA-2 extremes. There is little change in
the top 10 or top 20 of the 59 cities we were able to analyse. Hence, the
overall conclusions found here remain consistent with the insights
presented in H13.

5. Implications for extreme sea level frequencies with sea level
rise

Why do these differences between D-C and GESLA-2 matter? This
can be answered by inspection of Fig. 10(a) which shows the increase in
the frequency of extreme sea levels around the world if MSL rises by
0.5 m, assuming that all other factors (tides, climatology of storm
surges etc.) remain the same in the future, and therefore that scale
parameters remain the same. Such a rise in MSL over the next 100 years
is entirely plausible according to the IPCC AR5 (Church et al., 2013).

Fig. 10(a) was made using D-C scale parameters derived using Eq.
(2). A Gumbel distribution will then imply an increase of ( )exp λ

0.5 in the
frequency of a given level being exceeded for an 0.5 m MSL rise, with λ
also in metres. It can be understood from this simple relationship why
we chose to plot in Fig. 3 the reciprocal of the scale parameter, as the
quantity of most interest, rather than the scale parameter itself. In ad-
dition, it can be seen that, given a typical scale parameter of 0.1 m and

Fig. 5. (a) Extreme levels (above MSL) for 1, 10, 100 and 1000 year return periods (green,
blue, red and black respectively) in D-C and GESLA-2; (b) Differences between H1000 and
H1 in D-C and GESLA-2; (c) Complementary cumulative distribution function (CCDF)
curves of the 1, 10, 100 and 1000 year return period extreme levels (green, blue, red and
black respectively) in D-C and GESLA-2 at the tide gauge locations in the GESLA-2 set. For
each return period (or colour) there are 2 curves, with that for D-C being to the right
(higher return level for given CCDF value) of that for GESLA-2.

Fig. 6. Data availability (the colour bar indicating the number of
annual maxima) at sites where tide gauges are located close (see size
of circles) to cities analysed by Hallegatte et al. (2013); black dots
denote cities where no tide gauges are close by or do not provide
sufficient data (see text).
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an MSL rise of 0.5 m, then the increase in the frequency will be of the
order of 150, and at locations where scale parameters are only a few
centimetres (such as at some tropical islands or even at locations in the
Mediterranean where the tidal range is small) almost any rise in MSL
will lead to an extremely large increase in this frequency, and hence in
the likelihood of flooding.

Fig. 10(b) shows the corresponding distribution using the GESLA-2
information. This figure provides an update to Fig. 13.25(a) in the IPCC
AR5 and can be regarded as a set of ‘true’ values by means of which the
worldwide distribution of Fig. 10(a) can be validated. In fact, major
differences can be seen between (a) and (b). The ratios of the increases
in frequency from D-C compared to those using GESLA-2 information
are shown in Fig. 10(c), while their differences shown in Fig. SM3 yield
almost the same conclusion. Fig. 10(c) and SM3 demonstrate in dif-
ferent ways that most coastlines would experience an increase in the
likelihood of flooding (given an MSL rise of 0.5 m) that is much larger
using D-C information than when using information from GESLA-2.
This is also seen in the results from the city exposure and risk analysis
for present-day and with future sea level rise.

6. Discussion and conclusions

We have undertaken a validation of the extreme sea level in-
formation in the DINAS-COAST data set by means of comparison with
information obtained from the tide gauge records in the GESLA-2 data
set, and we have explored the implications for flood impact studies. Our
three main points are:

(1) The extreme levels in D-C are systematically too ‘flat’ (i.e. they do
not increase with return period as fast as the GESLA-2 observa-
tions).

(2) The extreme levels in D-C (i.e. the H values) are systematically
larger than those in the GESLA-2 observations.

(3) Differences (or uncertainties) in overall levels are more important
for present-day exposure and impact analysis, but differences in
scale parameters dominate when future sea level rise is included.

Point 2 suggests that the D-C approach modelled either the extreme
tide and/or storm surge components of extreme sea levels inadequately.
One could definitely argue that using MHW will not represent the tidal

Fig. 7. Relative differences in (a) exposure of
monetary assets to a 100-year extreme sea level
event, (b) annual average losses under 2005
conditions, and (c) annual average losses for
2050 with sea level rise and no adaptation when
using GESLA-2 and D-C extreme estimates; blue
indicates that results based on D-C are too small,
red means they are too high. Relative differences
are expressed as (Value using D-C minus Value
using GESLA) / Value using D-C.
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extremes adequately. Mean high water springs (MHWS) would have
been a better choice, and would have been as easily accessible a
quantity to extract from tide tables as MHW. However, parameterising
the tidal extremes by MHW or MHWS does not allow nodal and peri-
gean tidal variations to be included in the extremes; this will be one
reason why the D-C extreme levels are too flat.

However, using these arguments concerning inadequacies in the
tidal extremes would also lead one to the conclusion that the extreme
levels in D-C are too low on average, rather than too high, as the
GESLA-2 data shows (i.e. Point 2). Consequently, we suspect that the
main reason that the D-C H values are too high stems from the way that
the storm surge contributions were computed.

The main consequence of having H1 to H1000 values that are too
high (relative to MSL) is that the present-day impact of flooding using a
coastal database, in which heights are referred to a datum of MSL, will
be over-estimated; see our results from the city analysis. However,
when coastal defences and wider adaptation are considered, the situa-
tion is made more complex.

The main consequence of Point 1 is on studies of the change in
likelihood of flooding when MSL rises. Using the D-C data will

overestimate the future growth in flood risk; for the cities we analysed
here there is an overestimation of more than 50%. Of course, this topic
only considers one component of impact and risk assessment (e.g. in our
analysis we assume that no adaptation occurs). Nevertheless, sea level
extremes are an important component of such analyses.

Point 3 highlights that efforts should be undertaken to remove off-
sets and other biases from the various representations of extreme sea
level information such as in D-C (and for the newer ones based on tide,
surge and wave modelling mentioned below), in order to improve the
quality of present-day risk analyses; the new GESLA-2 data base can
provide helpful insights on where such biases exist and are most im-
portant. In particular, when the impacts of sea level rise are being
considered, it is important that the variability of extreme events is re-
presented accurately in order to obtain a realistic slope to the extreme
value distribution (which, in our case, was a Gumbel but which would
be true for other parameterisations such as the GEV).

Overall, we have demonstrated that the improved data on sea level
extremes from GESLA-2 clearly point in the direction of obtaining lower
estimates than those obtained in previous studies for the exposure of
people and assets to floods both today and in the future. An exploration

Fig. 8. Same as Fig. 7, but the GESLA-2 offsets for
10-year return levels were removed to match the
D-C results.
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of the H13 results suggests that, while their estimates of impacts will
need to be reduced, the insights and overall conclusions that emerge
from that analysis are qualitatively robust. Of course, there is con-
tinuing interest in obtaining firmer estimates of actual losses and
adaptation costs. However, the latter in particular are complex to cal-
culate, which is why they have not been re-assessed in this paper.

Fortunately, improvements in large- to global-scale numerical
modelling and related studies are allowing this to happen as illustrated
by Muis et al. (2016), Vousdoukas et al. (2016) and other ongoing re-
search, and by local studies of inundation probabilities and coastal
impacts such as the modelling of the Gulf of Mexico by Bilskie et al.
(2014). As these datasets on extremes become available, it is important
that they be validated against a tide gauge data set such as GESLA-2,
before being applied to new assessments that consider extreme sea le-
vels with the other drivers of risk and exposure. In particular, it will be
interesting to understand how an improved representation of extreme
sea levels affects adaptation costs. As Wong et al. (2014) demonstrated,
the costs of adaptation to sea level rise, particularly by developing
countries, potentially represent enormous national investments: these

assessments should be updated for the next IPCC assessment. Given the
agreement at the Conference of Parties (COP)-21 in Paris in December
2015 to limit global warming to 2° (and if possible to 1.5°), a focus on
hotspots for coastal impacts and adaptation needs, such as small islands
and deltas would be especially important.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gloplacha.2017.06.007.
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