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Abstract Uncertainty forms an integral part of climate science, and it is often used to argue
against mitigative action. This article presents an analysis of uncertainty in climate sen-
sitivity that is robust to a range of assumptions. We show that increasing uncertainty is
necessarily associated with greater expected damages from warming, provided the func-
tion relating warming to damages is convex. This constraint is unaffected by subjective
or cultural risk-perception factors, it is unlikely to be overcome by the discount rate,
and it is independent of the presumed magnitude of climate sensitivity. The analysis also
extends to “second-order” uncertainty; that is, situations in which experts disagree. Greater
disagreement among experts increases the likelihood that the risk of exceeding a global tem-
perature threshold is greater. Likewise, increasing uncertainty requires increasingly greater
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protective measures against sea level rise. This constraint derives directly from the sta-
tistical properties of extreme values. We conclude that any appeal to uncertainty compels
a stronger, rather than weaker, concern about unabated warming than in the absence of
uncertainty.

1 Introduction

Uncertainty is an unavoidable aspect of scientific endeavors. The IPCC’s AR4 of 2007
used the word “uncertain” or its derivatives more than 1200 times in the report of Working
Group 1 alone—around 1.2 times per printed page. Although the scientific community has
sought to develop ways of dealing with uncertainty (e.g., Intergovernmental Panel on Cli-
mate Change 2005; Narita 2012), scientific uncertainty has often been highlighted in public
debates to preclude or delay political action on contentious issues (e.g., Freudenburg et al.
2008; Freudenburg and Muselli 2013).

Political appeals to uncertainty tend to follow two streams of argumentation: The first
stream asymmetrically focuses on the possibility that the problem (e.g., climate change)
may be less serious than anticipated and that any potential surprises are more likely to be
benign rather than inauspicious. The second stream paints scientific uncertainty as a “mon-
ster” that is not readily managed (Van der Sluijs 2005). Accordingly, some have argued that
science makes environmental controversies worse (Sarewitz 2004), implying that research
is impotent in informing public policy.

We argue that those streams of argumentation misconstrue the impact of scientific uncer-
tainty on policy choices. In the remainder of this article we show that greater uncertainty
about climate change implies a greater probability of adverse consequences. In a compan-
ion article, we analyze the implications of uncertainty on mitigation (Lewandowsky et al.
2014) and show similarly that greater uncertainty implies a greater, not lesser, impetus for
mitigative action.

2 Framing uncertainty: risks and outcomes

Figure 1 presents two possible global “policy responses” (in rows) and two possible states of
the world (in columns), with the possible outcomes highlighted in the corresponding cells.

By dichotomizing a range of possible decisions and states of the world, the figure nec-
essarily simplifies. Nonetheless, it highlights several core issues. First, it emphasizes a fact
that receives insufficient attention for historical and psychological reasons (Lewandowsky
et al. 2013); namely, that the decision not to cut emissions is not an inactive “null” default.
Instead, withholding emission cuts and continuing with “business as usual” equates to an
active decision to add greenhouse gases to the atmosphere. This realization is non-trivial
because it reframes the issue from whether or not societies “should do something,” to an
acknowledgment that we are doing something already—adding CO2 to the atmosphere—
and that the consequences of that action must be contrasted with the costs of alternative
actions.

This raises the second point made by Fig. 1, that the outcomes of actions must be eval-
uated with respect to the states of the world. There are two main approaches by which
the constraints implied by Fig. 1—and the associated uncertainties—are conventionally
resolved: One approach relies on economic cost-benefit analysis and the other invokes the
precautionary principle.
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Fig. 1 Contingency table relating the (in principle unknowable) true state of the world (columns) to possible
policy responses (rows). Cell entries are the consequences that are likely to arise from each policy responses
contingent on the two possible states of the world. For simplicity, the range of possible equilibrium climate
sensitivities (i.e., the ultimate response of the climate system to a doubling in CO2 levels from preindustrial
times) is dichotomized into values below 1 ◦C, which would entail only limited adverse consequences, and
values in the vicinity or above 2 ◦C, which would lead to serious adverse consequences on an unabated
emissions path

2.1 Cost-benefit analysis

Cost-benefit analysis (CBA) considers the cost of various emission paths against the asso-
ciated benefits accrued by a reduction or avoidance of damages from climate change (e.g.,
Garnaut 2011; Nordhaus 2010; Stern 2007; Tol 2011). Uncertainty can be represented in
CBA by probability-weighting the competing costs (cf. Schneider 2002).

Several limitations curtail the utility of CBA: First, notwithstanding its apparent objectiv-
ity, CBA is not free of ethical considerations (Aldred 2009; Nolt 2011; Risbey 2006), even
if they remain tacit. This problem is most apparent in connection with the monetarization of
environmental “goods” such as species diversity (Ressurreição et al. 2011), the existence of
songbirds (Funtowicz and Ravetz 1994), or indeed human life (cf. Li et al. 2010). Second,
CBA is affected by people’s attitudes toward risk (Nordhaus 2011) and is therefore neces-
sarily influenced by cultural and political factors (e.g., Kahan et al. 2006; Slovic 1999). To
illustrate, Ackerman et al. (2005) showed retrospectively that CBA would have prevented
implementation of a number of regulatory public-health measures, among them limiting
workplace exposure to vinyl chloride which likely saved many lives (Michaels 2008).

Third, because climate mitigation costs would be incurred now, whereas damages from
climate change will largely come due in the future, CBA must necessarily discount those
future costs against present expenditure by applying an interest rate (the discount rate; e.g.,
Anthoff 2009). Decisions about the discount rate have drastic effects on CBA; if the dis-
count rate is sufficiently high, any future cost, no matter how great, will appear minuscule
compared to present-day mitigation costs (e.g., Weitzman 2010a). For example, with a dis-
count rate of 1 % per annum, a presumed damage of $1,000,000 in 300 years is worth
around $50,000 today. With a rate of 5 %, the discounted value is less than 50 cents (Sterner
and Persson 2008). Relatively small variations in discounting can thus alter the anticipated
damage cost by orders of magnitude—thereby undermining the robustness of CBA.

2.2 Precautionary principle

An alternative to CBA invokes the precautionary principle (e.g., Vlek 2010a, b). Put in its
most succinct form, the principle holds that if there is a potential for harm from an activity,
and if there is uncertainty about the magnitude of those impacts, then action should be taken
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to avoid that harm (e.g., Gardiner 2006). Unlike CBA, the precautionary principle is asym-
metrical because it focuses on the bottom-right cell in Fig. 1, thereby effectively reversing
the “burden of proof”: Unless an activity (or product) can be shown to have no harmful con-
sequences, it should cease. Thus, on the precautionary principle, action is triggered because
there is uncertainty about an outcome, not despite of any uncertainty.

Like CBA, the precautionary principle has been subject to criticism (e.g., Feintuck 2005;
John 2010; Kahan et al. 2006; Peterson 2006; Vlek 2010a, b). For example, the principle has
been labeled incoherent (Peterson 2006) because if any precautionary action (e.g., cutting
CO2 emissions) itself leads to adverse outcomes (e.g., risks from expanding nuclear power),
then the precautionary principle provides no guidance about how to resolve the conundrum.
Further criticism cites the ill-specified role of uncertainty, which by an extreme interpreta-
tion might suggest that an activity should be banned if there is any possibility, no matter
how small, that it might prove harmful (cf. Gardiner 2006).

We therefore suggest that neither CBA nor the precautionary principle are sufficient to
resolve the dilemma posed by Fig. 1. We argue instead that the implications of Fig. 1 are
best explored by deriving uncertainty-based constraints that are (a) not subject to cultural
and personal vagaries of risk perception, (b) are unlikely to be affected by the discount rate,
and (c) involve few if any ethical considerations. Our approach rests on developing ordinal
constraints—i.e., constraints of the form “greater than” or “lesser than”—that derive from
the functional form of the mapping between uncertainty and outcomes.

3 Uncertainty and unabated emissions

In the remainder of this article, we consider the role of uncertainty with respect to
the policy decision to continue with unabated emissions (bottom row of Fig. 1). The
complementary role of uncertainty with respect to mitigation is addressed in a compan-
ion article (Lewandowsky et al. 2014), in which we also show how uncertainty-based
constraints might inform policy choices via a simple decision model, such as a “safe-
minimum-standard” (i.e., specifying the maximum tolerable risk of exceeding a temperature
threshold).

We differentiate and delineate the concepts of risk and various types of uncertainty as
follows. We use risk to refer to the set of possible consequences of climate change, each
with quantifiable probabilities and losses (Schneider 2002). We use uncertainty, by contrast,
to refer to the imprecision of our knowledge of various crucial climate variables, which is
typically captured by the variance of the variable’s estimate (cf. Padilla et al. 2011). We
are primarily concerned with uncertainty in equilibrium climate sensitivity (ECS); that is,
uncertainty about the warming ultimately expected in response to a doubling of CO2 from
preindustrial times. For convenience, we assume that CO2 will double, from approximately
275 ppm pre-industrially to 550 ppm, such that the expected global temperature increase
equals the presumed sensitivity.

The value of climate sensitivity is constrained by several sources of evidence, rang-
ing from paleoclimatology (e.g., Hegerl et al. 2006; Zeebe et al. 2009) to analysis of the
observational record in conjunction with climate modeling (e.g., Bender et al. 2010). Those
multiple lines of evidence converge on a point estimate of ECS of around 3 ◦C, with a likely
range from 2 ◦C to 4.5 ◦C, and a lower bound of 1.5 ◦C (e.g., Knutti and Hegerl 2008;
Meehl et al. 2007). Values substantially higher than 4.5 ◦C remain subject to debate, with
some arguing that it ought to be considered as a firm upper bound (Annan and Hargreaves
2011) and others suggesting the contrary (Roe and Armour 2011).

Author's personal copy



Climatic Change (2014) 124:21–37 25

In light of those multiple converging constraints, we begin by focusing on “first-order”
uncertainty (cf. Walley 1991); that is, the error surrounding the (single) estimate of a param-
eter that is captured by the variance of its inferred probability density function. To prevent
confusion, we call this quantity uncertaintyECS (for Equilibrium Climate Sensitivity) from
here on. We introduce other subscripts for other manifestations of uncertainty where nec-
essary. We later extend our analysis to “second-order” uncertainty; where the nature of the
probability distribution is uncertain, so that its variance and higher moments are unknown.
Second-order uncertainty may arise from lack of relevant information, but also when there
are divergent estimates of a parameter such as climate sensitivity (cf. Smithson 1999).

3.1 Asymmetrical tails

Extant climate sensitivity distributions are asymmetric: they are thought to have a “fat”
upper tail and a comparatively abruptly truncated lower tail. Thus, the area of the distribution
below its mean is more sharply bounded than the area above: values of climate sensitivity
far above the central location of the distribution are more likely than values far below (Roe
and Baker 2007). The fat upper tail implies that particularly severe consequences arising
from CO2 emissions cannot be ruled out (Weitzman 2011). This concern is supported by
episodes of rapid climate change in the geological past (e.g., Bahn et al. 2011; Holmes
et al. 2011).

A further consideration concerns the magnitude of uncertaintyECS. To examine the
impact of the magnitude of uncertaintyECS, its effects must be disentangled from the value
of the “best estimate” for ECS. This can be accomplished in several ways, depending on
one’s choice of “best estimate”, or measure of central location of the sensitivity distribution.
Figure 2 illustrates two possibilities, one using the mode (panel A) and the other using the
mean (panel B), as the measure of location that is to be disentangled from the distribution’s
spread (i.e., standard deviation). Each panel shows three arbitrary fat-tailed probability den-
sity functions of differing spread. In panel A, the mode (labeled Mo) is kept constant as
the standard deviation (σ ) increases. This approach might appear appealing because it cre-
ates an increasingly fatter tail while keeping the most likely estimate unchanged. However,
one consequence of keeping the mode constant while increasing spread is that the mean
(vertical lines μ) increases together with the standard deviation. It follows that the conse-
quences of increasing uncertainty (σ ) cannot be disentangled from the contribution of the
increasing mean, thereby preventing an unambiguous interpretation. Note that the median
also increases with increasing uncertainty.

This problem can be circumvented by keeping the mean of the distributions constant
while increasing its spread (panel B in Fig. 2). This approach is known as a mean-preserving
examination of uncertainty and is common in economics and finance (e.g., Hartman 1972).
The approach is conservative because as uncertainty increases with the mean constant, the
mode of the distribution (like its median) decreases; hence the effects of increasing uncer-
tainty cannot be attributed to a concomitant increase in any measure of central location. We
therefore apply the mean-preserving approach throughout.

We demonstrate the effects of a mean-preserving increase in uncertainty using a sim-
ulated lognormal distribution of ECS. The lognormal was chosen for illustrative purposes
because it has a fat upper tail, but this choice entails no commitment to the precise shape
of the sensitivity distribution. Table 1 summarizes the parameter values and results based
on 10,000 samples. The expected value of the distribution, μL, was kept constant in all
simulation runs, but the uncertainty of its estimate—that is, the standard deviation of the
distribution; σL—increased from small to considerable across runs.
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Fig. 2 The effects of increasing
the spread (standard deviation,
σ ) on an arbitrary but fat-tailed
probability density function
obtained by convolving a
Gaussian and an exponential
distribution. (The convolution of
those two distributions, defined
by three parameters, lends itself
particularly well to manipulation
of mean, standard deviation, and
“fatness” of the tail.) Panel a
shows the effects of keeping the
mode (Mo) constant at 1.4 while
increasing the distribution’s
standard deviation, σ , from .54 to
1.14 and 1.36, respectively. The
accompanying increase in means
is denoted by μ1 through μ3.
Panel b shows the effects of
keeping the mean (μ) constant at
3.2 while increasing σ from .52
to 1.0 and 1.24, respectively.
Mo1 through Mo3 denote the
accompanying decrease in modes

Table 1 illustrates two principal consequences of increasing uncertaintyECS. First, as the
spread of the distribution increases, the probability of a gravely concerning outcome also
increases (columns P (X > Tc); i.e., warming in excess of 5 ◦C or even 7 ◦C; (Sherwood
and Huber 2010)). For a threshold temperature of 5 ◦C, increasing uncertaintyECS fivefold,
from .5 to 2.5, increases the likelihood of catastrophe by a factor of nearly 250, from .06 to
14.5 %.

This is a necessary consequence of the fact that if two lognormal distributions have an
identical expected value (μL), then the distribution with the greater standard deviation (call
that σL2) will always have a “fatter tail” than the distribution with the lesser standard devi-
ation (σL1). Intuitively, this phenomenon arises because the lower bound of all lognormal
distributions is zero, and a greater standard deviation must therefore translate into greater
probability mass somewhere in the upper tail. Formally, there exists a threshold θ , such that
for any x > θ , {1 − cdfσL2(x)} > {1 − cdfσL1(x)}, where cdf is the lognormal cumu-
lative density function. The precise location of θ depends on both μL and σL; here, we
are concerned only with the fact that there exists a θ beyond which the distribution with
the greater σL has more probability mass, not the location of that threshold. We conclude
that the greater the uncertainty, the greater the potential for large changes because greater
uncertaintyECS necessarily entails a greater likelihood of extremely high values of sensi-
tivity. Rive and Myhre (2012) recognized the need to communicate the possibility of such
extreme temperature changes to the public and policy makers.
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Table 1 Parameter values and results for our simulations involving a lognormal climate sensitivity
distribution

Simulation Lognormal Gaussian a P(X > Tc) b P(X < Tc) c

μL σL μG σG 5 ◦C 7 ◦C μL (3 ◦C) 2 ◦C (“safe”)

A 3.00 0.5 1.08 0.17 .0006 .0 .536 .009

B 3.00 1.0 1.05 0.32 .044 .003 .568 .044

C 3.00 1.5 0.99 0.47 .101 . 020 .595 .267

D 3.00 2.5 0.83 0.73 .145 .068 .635 .425

a Lognormal distributions are often characterized by the parameters of the underlying Gaussian distri-
bution, shown here as μG and σG. They are related to the parameters of the lognormal distribution via

μL = exp (μG + .5σ 2
G) and σL = exp (μG + .5σ 2

G)×
√

exp (σ 2
G)− 1.

bProportions of sampled climate sensitivities that exceed the given threshold temperature Tc .
cProportion of sampled climate sensitivities below the given threshold temperature Tc.

The second principal feature of Table 1 (columns P (X < Tc)) appears comforting at
first glance: As uncertaintyECS increases, the proportion of lower-end sensitivities increases.
This is a necessary consequence of keeping the mean, μL, constant while the mode and
median shift to the left (cf. Fig. 2b). The proportion of low estimates (< 2 ◦C) increases
to 42.5 % when uncertaintyECS is greatest.The large proportion of low sensitivities invites
a potential alternative interpretation: With a nearly even chance that sensitivity might fall
below the ostensibly-safe “guardrail” of 2 ◦C, perhaps one could legitimately ignore the
upper tail, however it might fatten with increasing uncertainty? Further analysis reveals
this gamble to be inadvisable for reasons involving the functional form of the relationship
between warming and damage.

3.2 The convex damage function

There is pervasive agreement among economic models that further global warming will
incur costly damage (e.g., Nordhaus 2010; Tol 2011). There is also agreement that the func-
tion that relates warming to cost is convex—that is, damage costs are accelerating with
increasing warming. For example, one parameterization of the damage function favored by
Nordhaus is:

d(t) = −0.0045 × T (t)+ 0.0035 × T 2(t), (1)

where d(t) is damage cost, expressed as a percentage of world GDP, at time t as a function
of temperature increase (T ; in ◦C) since pre-industrial times (for a discussion of damage
functions, see Wouter Botzen and van den Bergh 2012; Tomassini et al. 2010; Weitzman
2010b).

For our analysis of uncertaintyECS, the precise form of the damage function turns out to
be inconsequential: What matters instead are three pervasive attributes of damage functions:
First, beyond a minimum at small temperature increases, damage functions are monoton-
ically increasing with further warming. For example, the function in Eq. 1 reaches its
minimum at T = 0.64 ◦C. Given that temperatures have already increased approximately
0.8 ◦C from pre-industrial times, further warming from here on—or from a nearby temper-
ature threshold (Tol 2009)—will incur increasingly greater damages. Second, a pervasive
attribute of damage functions is that they are convex—i.e., they are upward accelerating.
Third, although a damage function cannot be computed without choosing a discount rate,
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the function retains its convex shape irrespective of the discount rate (e.g., Fig. 5a Tomassini
et al. 2010). This convexity turns out to have notable implications.

With a convex function, we can rely on a theorem known as Jensen’s inequality (Jensen
1906) to derive ordinal predictions about the damage expected from climate change.
Jensen’s inequality can be stated as: “If X is a (non-degenerate) random variable tak-
ing values in an interval (r, s), and if u(X) is a strictly convex function on (r, s), then
mean[u(X)] > u(mean[X]), providing that mean[X] and mean[u(X)] exist and are finite”
(Brewster et al. 2005, p. 394). We explore the implications of Jensen’s inequality, namely
that increasing variance in X elevates the response mean(u[X]) if u is convex (Smallwood
1996), by simulation.

Figure 3 shows the relationship between simulated lognormal distributions of ECS and
the total risk from climate change—that is, the distribution of likely damages. This illustra-
tive simulation used a simple quadratic cost function, d(T ) = T 2, where T was the value
drawn from the climate-sensitivity distribution (bottom horizontal graphs in each panel) and
d was the corresponding “reflected” observation in the damage-cost distribution (vertical
graphs on left). The damage function is shown in the large plot within each panel.

We again fixed the mean of the sensitivity distributions for the reasons noted earlier, and
changed only uncertaintyECS. The figure reveals that increased uncertaintyECS—reflected in
the increased spread of the climate sensitivity distribution in panel B compared to panel A—
translates into greater expected cost: The mean of the damage distribution is greater in panel
B than in panel A (compare the length of vertical double-headed arrows between panels).
This result is a necessary outcome provided the function relating temperature increases (i.e.,
sensitivity) to cost is convex (e.g., Smallwood 1996) and it holds—by Jensen’s inequality—
irrespective of the shape of the uncertaintyECS distribution. We show in the Supplementary
material (Section S1) that this conclusion also holds when risk is measured in ways other
than mean expected damage; for example, by examining the consequences for certain
thresholds of sensitivity.

Some additional points apply to Fig. 3: First, not only does greater uncertaintyECS

increase the mean expected damage, but it also increases the uncertainty around that
expected damage (call that uncertaintyD). The increase in uncertaintyD is relevant because
it must be taken into account when assessing total risk. Second, we show in the supple-
mentary material that this result holds irrespective of the absolute value of mean sensitivity.
Although increasing mean sensitivity increases the expected mean damage, there always is
an additional contribution from an increase in uncertaintyECS (see Table S1).

3.3 Speed of warming and the discount rate

Finally, we examine the relationship between climate sensitivity and the rate of future
warming. There is considerable evidence that greater sensitivity translates into more rapid
warming, all other things being equal (e.g., Bahn et al. 2011; Raupach et al. 2011; Ross
et al. 2012; Winton et al. 2013). It follows that greater uncertainty about climate sen-
sitivity translates not only into greater expected damage, but it also implies that greater
damages are likely to arrive sooner rather than later.1 We provide a formal analysis of the

1Notwithstanding the greater speed of warming, the climate system will take longer overall to reach
equilibrium if climate sensitivity is greater (Hansen et al. 1985).
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Fig. 3 Illustration of the consequences of Jensen’s inequality across two levels of uncertaintyECS. Standard
deviations of the lognormal climate sensitivity distributions (σL), shown at the bottom of each panel, are .5
and 2.5 in panels A and B, respectively, with μL fixed at 3. Distributions of expected damage costs are shown
at the left in each panel, using units that are arbitrary but with a scale that is aligned between panels. Mean
(m) and standard deviation (s) of the simulated distributions are also shown. For all distributions the means
are represented by thick solid lines. Vertical arrows highlight distance of the mean of the damage distribution
from 0. The damage function in the large plot within each panel is arbitrary and shown for illustration only

relationship between speed of warming and climate sensitivity in the Supplementary
material (Section S2).

This point has an important implication because it prevents the discount rate from alter-
ing the functional relationship between uncertaintyECS and the magnitude of damages. To
clarify why that is the case, it is helpful to consider the consequences of the opposite out-
come, viz. if greater damages were delayed, rather than accelerated, as a function of greater
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uncertaintyECS. If that opposite outcome were the case, then an expected damage cost of,
say, $100,000,000 under greater uncertaintyECS would occur some time later than a cost of,
say, $80,000,000 if uncertaintyECS were lower. When a greater cost is delayed relative to a
lesser one, its value can always be discounted below the lesser cost by choosing a convenient
discount rate. We noted earlier that the choice of discount rate can alter discounted amounts
by orders of magnitude: For our analysis it is therefore important that greater uncertaintyECS

translates into acceleration as well as amplification of climate-related damages. Because
discounting, by definition, only affects future outcomes, any cost that occurs sooner than
another one cannot be discounted below the other one: $100,000,000 due now cannot be
discounted to be less than $80,000,000 that is due at some later time. This argument is again
ordinal in nature and does not depend on how much quicker warming is if climate sensitiv-
ity is greater than anticipated: Provided greater sensitivity does not delay a given extent of
warming—and it does not (Bahn et al. 2011; Raupach et al. 2011; Ross et al. 2012; Winton
et al. 2013)—the relationship between uncertaintyECS and damages just uncovered holds
irrespective of the discount rate.

Our analysis thus far rested on three assumptions. First, we assumed an asymmetric “fat-
tailed” distribution of ECS. Second, by focusing on a mean-invariant transformation of a
presumed probability density function, our analysis has been limited to what is called “first-
order” uncertainty; namely, uncertainty associated with the estimate of a single parameter.
Third, we assumed that the function relating warming to damages is convex, as is perva-
sively assumed in economic modeling. We now show that our analysis remains unaffected
by a relaxation of those assumptions.

3.4 Symmetrical climate sensitivity

We show in the Supplementary material (Section S3) that the implications of Jensen’s
inequality generalize to situations in which the distribution of climate sensitivities is entirely
symmetrical. Although the assumption of symmetry is likely incorrect (Roe and Baker
2007, 2011), the removal of a fat upper tails is also the most conservative assumption one
can make about the evolution of the climate. The fact that increasing uncertainty nonetheless
leads to increasing expected damages attests to the robustness of our approach.

3.5 Ambiguity among estimates of climate sensitivity

We argued earlier that enough is known about climate sensitivity to consider its estimation
to involve mainly “first-order” uncertainty, or uncertainty intrinsic to the estimate of a single
value. What are the implications of introducing “second-order” uncertainty, for example by
considering competing and divergent estimates of ECS?

Figure 4 (Panel A) illustrates second-order uncertainty with 3 hypothetical climate-
sensitivity distributions that differ in mean and variance. Each distribution can be taken to
represent the knowledge of a single expert obtained by an expert-elicitation methodology
(e.g., Morgan and Keith 1995). Although the hypothetical distributions share a common
(lognormal) shape and overlap considerably, there is also some heterogeneity among the
expert judgments. This is best illustrated by considering the areas of the curves that exceed
a cutoff (Tc), which in Fig. 4 was arbitrarily set to 4 ◦C. Note that the same cutoff applies to
all three distributions, and that the area exceeding the cutoff is a function of both mean and
variance of each distribution.

Given that we assume a doubling of atmospheric CO2 throughout this article, the shaded
areas also represent the probabilities πi that each expert i assigns to the risk that global
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a b

Fig. 4 a Three hypothetical lognormal probability density functions (PDF) of climate sensitivity with dif-
ferent means and variances (μG = 1.1, 0.9, and 1.2, respectively, from top to bottom; corresponding
σG = 0.2, 0.3, and 0.4). Each distribution can be taken to represent the subjective PDF of an individual
expert. The shaded areas, numbered 1 through 3, identify the probabilities with which a temperature thresh-
old (Tc; in this case 4 ◦C) would be exceeded if CO2 levels doubled from preindustrial levels. b Hypothetical
Beta distribution (parameters a = 2; b = 12) that characterizes the exceedance probabilities (shaded areas in
Panel A; πi’s) across individuals. Numbered points refer to shaded areas in Panel A. See text for more details

temperatures may increase by more than Tc (4 ◦C). Second-order uncertainty, then, is cap-
tured by the distribution of those exceedance probabilities, πi ’s, across experts. Panel B in
Fig. 4 shows a hypothetical Beta distribution that characterizes those exceedance probabil-
ities across a presumed population of experts. (Panel B also shows the three exceedance
probabilities from Panel A for illustrative purposes.)

It is intuitively obvious that as disagreement among experts increases—thereby introduc-
ing greater heterogeneity into their estimated exceedance probabilities—the variance of the
Beta distribution that characterizes those probabilities also increases. This in turn necessar-
ily implies that there is greater probability mass over the larger values of πi , thereby raising
the likelihood of greater risks of exceeding Tc (4 ◦C).

This intuition is formalized in Fig. 5, which plots a family of complementary cumulative
distribution functions (i.e., the tail distribution F̄ (x) = P(X > x) = 1 − F(x)) for Beta
distributions of constant mean (μB = 0.2) but differing variance. The weight of the lines in
Fig. 5 maps into the variance of the underlying distribution: It is clear that as the variance
increases, the probability mass over the larger exceedance probabilities increases. Concep-
tually, this means that as disagreement among experts increases, greater risks of exceeding
a global temperature threshold also become more likely.

Note that this result is based entirely on the distribution of exceedance probabilities: It is
therefore unimportant whether experts differ with respect to their estimates of mean climate
sensitivity, or their estimates of uncertainty surrounding that mean estimate, or both. The
only constraint in our analysis of second-order uncertainty is, once again, that the mean

Author's personal copy



32 Climatic Change (2014) 124:21–37

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Threshold Exceedance Probability

1 
− 

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 D

en
si

ty

Fig. 5 Family of complementary cumulative distribution functions for Beta distributions of constant mean
(μB = 0.2) but differing variance. The standard deviations of the functions range from σB = 0.062 for the
lightest line, to 0.087, 0.121, and 0.163 in increasing order of line thickness

exceedance probability (i.e., μB ) remains constant—it is only by keeping the mean constant
that the effects of varying degrees of disagreement among experts can be modeled.

In the Supplementary material (Section S4), we apply the preceding analysis to an
expert-elicitation study (Morgan and Keith 1995). The data of Morgan and Keith (1995) are
particularly suitable because they contain one outlying observation; namely, an expert who
provided a very low but highly certain estimate of climate sensitivity. We show that removal
of this outlier, which reduces ambiguity among experts, tends to reduce the likelihood of
extreme risks of exceeding a global temperature threshold. Conversely, we show that if this
outlying expert is replicated and replaces some other observations at random, the likelihood
of exceeding a tolerable risk of excessive warming increases in most cases. For that analy-
sis, both mean and variance of the distribution of exceedance probabilities were allowed to
vary freely: We nonetheless found that greater second-order uncertainty entailed a greater
likelihood of threshold exceedance in the majority of cases.

3.6 Sea level rise and inundation risk

Sea level rise (SLR) is one of the more costly consequences of climate change: Coping with
SLR requires that existing coastal structures must be relocated, raised, or protected by levees
or dikes. To prevent an increase in the risk from flooding as sea levels rise, it is insufficient
to focus on projected mean SLR: Instead, an additional allowance for extreme events (e.g.,
storm surges) must be made.

The extra allowance for extreme events is a function of the uncertainty in the estimated
mean SLR, called uncertaintySLR from here on. That is, the total height of protective mea-
sures required to keep the risk from flooding constant is a function of the projected increase
(call that X) as well as its uncertaintySLR (i.e., the standard deviation of X). Hunter (2012)
computed the required magnitude of the constant-risk protective response to SLR. Risk here
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is measured in units of flooding events whose magnitude is assumed to remain constant. In
line with recent recommendations (Katz et al. 2013), Hunter (2012) focused on modeling
of extreme events. Specifically, Hunter (2012) used a Gumbel distribution, the simplest of
the set of generalised extreme-value distributions, which is known to characterize sea-level
extremes (Van den Brink and Können 2011). The implications of Hunter (2012)’s analysis
are shown in Fig. 6.

The figure plots the total protective response necessary to cope with SLR as a func-
tion of uncertaintySLR, using three different distributions to characterize uncertaintySLR.
Note that unlike the distribution of climate sensitivity, the three modeled distributions
for uncertaintySLR—uniform, Gaussian, and raised cosine—are all symmetrical. For the
purposes of this illustration, SLR was expected to be 0.5 m, represented by the horizon-
tal dashed line. Accordingly, when there is no uncertaintySLR in the estimate, the total
protective response is equal to the expected SLR, namely 0.5 m.

When uncertaintySLR is non-zero, then irrespective of what assumptions are made about
the distribution of SLR, the required protective response increases and deviates rapidly and
in an accelerating manner from the anticipated mean SLR. For example, under a Gaussian
assumption, if uncertaintySLR is around 0.36 m, this raises the required protective response
to around 1 m. That is, an expected SLR of 0.5 m requires that dikes and levees be raised by
twice that amount in order to keep the risk of flooding constant in light of uncertaintySLR.
If other distributional assumptions are made, the values change but the in-principle conclu-
sion remains the same: Greater uncertaintySLR translates into a greater required protective
response. Note that the value of 0.36 m was not chosen arbitrarily but represents a current
estimate of the uncertaintySLR in SLR projections (Hunter 2012; Nicholls et al. 2011). Like-
wise, the expectation of 0.5 m global mean SLR is consonant with IPCC projections for

Fig. 6 The effects of uncertaintySLR in future sea level rise (SLR) on the protective response required to
keep the risk from flooding constant. Protective response is expressed in m (e.g., of raising dikes, levees,
or buildings) and uncertaintySLR is expressed as the standard deviation (σ ) of the expected SLR. For this
illustration, sea level is expected to rise by 0.5 m (dotted horizontal line). The three lines represent different
distributional assumptions about future SLR. Figure produced from the equations provided by Hunter (2012)
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century’s end on the current emissions trajectory (Meehl et al. 2007), although that estimate
is now considered a lower bound on likely SLR (e.g., Nicholls et al. 2011).

We underscore two points in connection with Fig. 6: First, the increase in the required
protective response results from greater uncertaintySLR only—the mean expected SLR is
constant for all data points in the figure. Second, the effects of uncertaintySLR derive from
the mathematical properties of extreme values (for details, see Hunter 2012), without any
auxiliary assumptions such as the convexity of the economic damage function, and are
therefore in little doubt at least at an ordinal level.

4 Conclusions: uncertainty and unabated emissions

4.1 Potential objections and limitations

Unlike related precedents (e.g., Tomassini et al. 2010; Webster et al. 2003; Weitzman 2009,
2011), our analysis ignored sources of uncertainty other than those associated with ECS
or SLR. Several other sources of uncertainty exist, such as potential amplifying loops in
the carbon cycle itself: Because warming can accelerate respiration, soil may turn from a
carbon sink to a carbon source (Cox et al. 2004), thereby shortening the time until CO2 has
doubled. The considerable uncertainty about the global policy response likewise affects the
time of CO2 doubling. One may therefore question whether our analysis extends to those
other sources of uncertainty.

Webster et al. (2003) differentiated between climate and emissions uncertainty, suggest-
ing that either on its own is just over half the uncertainty of both combined. Specifically,
the standard deviation of expected temperature increases by 2100 was 0.69 ◦C for climate
uncertainty alone, 0.76 ◦C for emissions uncertainty, and 1.18 ◦C for both combined. Emis-
sions uncertainty thus adds to the uncertaintyECS we have considered here, suggesting that
this additional source of uncertainty amplifies the impact of our analysis.

4.2 Implications

Our analyses of the role of uncertaintyECS in relation to damage costs from climate change
yielded a fairly clear conclusion: The greater the uncertainty, the greater the expected cost of
unmitigated global warming. When damages are considered at a macro-economic level, this
relationship arises directly from the convexity of the damage function, an assumption shared
by all extant economic models. When the consequences of climate change are considered
with respect to sea level rise, the relationship between greater uncertaintySLR and greater
adaptation costs emerges without making any assumptions about the cost function, simply
from mathematical examination of the behavior of extreme values.

Our conclusion is unlikely to be affected by the discount rate because increasing
uncertaintyECS likely also accelerates damages in addition to increasing their magnitude,
thereby preventing any application of discounting. Similarly, because our analysis presents
ordinal constraints (i.e., of the form “greater than”) that do not depend on absolute estimates
of uncertaintyECS our conclusions also are not subject to cultural and personal risk percep-
tion variables. Our conclusion is also quite robust to “second-order” uncertainty, such as
disagreement among experts about the climate-sensitivity distribution.

Our analysis permits at least one optimistic conclusion: The converse of our argument is
that any reduction in uncertaintyECS arising from further research will translate into lesser
expected damages from unmitigated climate change (cf. Webster et al. 2003).
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At the outset, we identified two misconstruals of climatic uncertainty; viz. that sur-
prises will likely be favorable and that uncertainty prevents policy decisions from being
scientifically informed. This article has shown the first claim to be flawed: Any appeal to
uncertainty about the evolution of the climate implies a stronger, rather than weaker, rea-
son to be concerned about unmitigated climate change than in the absence of uncertainty.
To complete the picture, we must confront the second misconstrual by analyzing whether
uncertainty can prevent science from informing policy. This is addressed by the companion
article (Lewandowsky et al. 2014).
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